hopsy.Mixture.log_gradient#

Mixture.log_gradient(self, x)#

Computes the gradient of the logarithm of the weighted sum of the probability density functions of the model components

logf(x)=logi=1nwifi(x).
Parameters:

x (numpy.ndarray[n, 1]) – Input vector

Returns:

The gradient of the (unnormalized) log_density

Return type:

numpy.ndarray[n, 1]