hopsy.compute_chebyshev_center#

class hopsy.compute_chebyshev_center(problem: Problem, original_space: bool = False)#

Computes the Chebyshev center, that is the midpoint of a (non-unique) largest inscribed ball in the polytope defined by Axb. Note that if A and b are transformed (e.g. rounded), the chebyshev center is computed in the transformed space. To trigger a backtransform, use the parameter original_space=True.

Parameters:
  • problem (hopsy.Problem) – Problem for which the Chebyshev center should be computed and which contains the matrix A and vector b in Axb.

  • original_space (bool) – If the problem has been transformed (e.g. rounded). the chebyshev center is computed in the rounded space by default. If the chebyshev center is required in the original space, use original_space=True. Only works if the transformation and shift are stored in the problem.

Returns:

The Chebyshev center of the passed problem.

Return type:

numpy.ndarray[float64[n,1]]