hopsy.mcse#
- class hopsy.mcse(data, series=0, method='mean', prob=None, dask_kwargs=None)#
Calculate Markov Chain Standard Error statistic.
- Parameters:
data (numpy.ndarray) – MCMC samples with
data.shape == (n_chains, n_draws, dim)
.series (int) – Compute a series of statistics every
series
samples, so mcse will be computed fordata[:,:n] for n in range(series, n_draws+1, series)
. For the default valueseries==0
, mcse will be computed only once for the whole data.method (str) – Select mcse method. Valid methods are: - “mean” - “sd” - “median” - “quantile”
prob (float) – Quantile information.
n_procs (int = 1) – In combination with “series”: compute series of mcse in parallel using
n_procs
subprocesses.dask_kwargs (dict, optional) – Dask related kwargs passed to
wrap_xarray_ufunc()
.
- Returns:
Return the msce dataset
- Return type:
numpy.ndarray
References