hopsy.Gaussian.compute_log_likelihood_gradient#

Gaussian.compute_log_likelihood_gradient(self, x)#
deprecated:: 1.4

Use log_gradient() instead.

Computes the gradient of the logarithm of the probability density function of a multivariate Gaussian model in \(n-k\) dimensions at x. Note that x still has to have dimension \(n\).

Parameters:

x (numpy.ndarray[n, 1]) – Input vector

Returns:

The gradient of the (unnormalized) log-likelihood

Return type:

numpy.ndarray[n, 1]