hops
|
multi-dimensional extension of rosenbrock function to N dimensions. Only defined on spaces of even N! More...
#include <Rosenbrock.hpp>
Public Member Functions | |
Rosenbrock (double scaleParameter, VectorType shiftParameter) | |
MatrixType::Scalar | computeNegativeLogLikelihood (const VectorType &x) const override |
Evaluates the negative log likelihood for input x. More... | |
MatrixType | computeHessian (const VectorType &x) const |
std::optional< VectorType > | computeLogLikelihoodGradient (const VectorType &x) const override |
std::optional< MatrixType > | computeExpectedFisherInformation (const VectorType &x) const override |
Actually this computes the softmax of the hessian instead of the the expected fisher information is intractable for this model. More... | |
Public Member Functions inherited from hops::Model | |
virtual | ~Model ()=default |
virtual std::optional< std::vector< std::string > > | getParameterNames () const |
multi-dimensional extension of rosenbrock function to N dimensions. Only defined on spaces of even N!
Reference: https://doi.org/10.1162/evco.2009.17.3.437
Definition: \( f(x_1, x_2,..., x_N) = \sum_{i=1}^{N/2} [s_i \cdot (x^2_{2i-1}-x_{2i})^2 + (x_{2i-1} -a_i)^2] \)
where \( \boldsymbol{a} \) is the shiftParameter and \( \boldsymbol{s} \) is the scaleParameter in the Constructor. Both vectors have dimensions ( \( \frac{N}{2} \)).
hops::Rosenbrock::Rosenbrock | ( | double | scaleParameter, |
VectorType | shiftParameter | ||
) |
@Brief shiftParameter has half the dimensions of the state vector
scaleParameter | |
shiftParameter |
|
overridevirtual |
Actually this computes the softmax of the hessian instead of the the expected fisher information is intractable for this model.
See 10.1007/978-3-642-40020-9_35
Reimplemented from hops::Model.
MatrixType hops::Rosenbrock::computeHessian | ( | const VectorType & | x | ) | const |
|
overridevirtual |
Reimplemented from hops::Model.
|
overridevirtual |