getConvergenceThreshold() | hops::RunBase< Model, Proposal > | |
getData() | hops::RunBase< Model, Proposal > | |
getFisherWeight() | hops::RunBase< Model, Proposal > | |
getMarkovChainType() | hops::RunBase< Model, Proposal > | |
getMaxRepetitions() | hops::RunBase< Model, Proposal > | |
getNumberOfChains() | hops::RunBase< Model, Proposal > | |
getNumberOfSamples() | hops::RunBase< Model, Proposal > | |
getProblem() | hops::RunBase< Model, Proposal > | |
getRandomSeed() | hops::RunBase< Model, Proposal > | |
getSamplingUntilConvergence() | hops::RunBase< Model, Proposal > | |
getStartingPoints() | hops::RunBase< Model, Proposal > | |
getStepSize() | hops::RunBase< Model, Proposal > | |
getThinning() | hops::RunBase< Model, Proposal > | |
getUseRounding() | hops::RunBase< Model, Proposal > | |
init() | hops::RunBase< Model, Proposal > | inline |
RunBase(MarkovChainType markovChainType, unsigned long numberOfSamples=1000, unsigned long numberOfChains=1) | hops::RunBase< Model, Proposal > | inline |
RunBase(const Problem< Model > &problem, MarkovChainType markovChainType=MarkovChainType::HitAndRun, unsigned long numberOfSamples=1000, unsigned long numberOfChains=1) | hops::RunBase< Model, Proposal > | inline |
RunBase(Proposal m_proposal, unsigned long numberOfSamples=1000, unsigned long numberOfChains=1) | hops::RunBase< Model, Proposal > | inline |
RunBase(const Problem< Model > &problem, Proposal m_proposal, unsigned long numberOfSamples=1000, unsigned long numberOfChains=1) | hops::RunBase< Model, Proposal > | inline |
RunBase()=default | hops::RunBase< Model, Proposal > | |
sample() | hops::RunBase< Model, Proposal > | inline |
sample(unsigned long numberOfSamples, unsigned long thinning=1) | hops::RunBase< Model, Proposal > | inline |
setConvergenceThreshold(double convergenceThreshold) | hops::RunBase< Model, Proposal > | |
setFisherWeight(double fisherWeight) | hops::RunBase< Model, Proposal > | |
setMarkovChainType(MarkovChainType markovChainType) | hops::RunBase< Model, Proposal > | |
setMaxRepetitions(double maxRepetitions) | hops::RunBase< Model, Proposal > | |
setNumberOfChains(unsigned long numberOfChains) | hops::RunBase< Model, Proposal > | |
setNumberOfSamples(unsigned long numberOfSamples) | hops::RunBase< Model, Proposal > | |
setProblem(const Problem< Model > &problem) | hops::RunBase< Model, Proposal > | |
setRandomSeed(double randomSeed) | hops::RunBase< Model, Proposal > | |
setSamplingUntilConvergence(bool sampleUntilConvergence) | hops::RunBase< Model, Proposal > | |
setStartingPoints(const std::vector< Eigen::VectorXd > &startingPoints) | hops::RunBase< Model, Proposal > | |
setStepSize(double stepSize) | hops::RunBase< Model, Proposal > | |
setThinning(unsigned long thinning) | hops::RunBase< Model, Proposal > | |
setUseRounding(bool useRounding) | hops::RunBase< Model, Proposal > | |
tune(RunBase &run, AcceptanceRateTuner::param_type ¶meters) | hops::RunBase< Model, Proposal > | friend |
tune(RunBase &run, ExpectedSquaredJumpDistanceTuner::param_type ¶meters) | hops::RunBase< Model, Proposal > | friend |
tune(RunBase &run, SimpleExpectedSquaredJumpDistanceTuner::param_type ¶meters) | hops::RunBase< Model, Proposal > | friend |