addObservations(const MatrixType &x, VectorType &y, VectorType &error) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
addObservations(const MatrixType &x, const VectorType &y) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
computePosterior(const MatrixType &input) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
GaussianProcess(Kernel kernel, double constantPriorMean=0) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
GaussianProcess(Kernel kernel, std::function< double(VectorType)> priorMeanFunction) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getKernel() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getObservedCovariance() const | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getObservedInputs() const | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getObservedValueErrors() const | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getObservedValues() const | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getPosteriorCopy() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getPosteriorCovariance() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getPosteriorMean() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getPriorCopy() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getPriorMeanFunction() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
getSqrtPosteriorCovariance() | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
sample(const MatrixType &input, hops::RandomNumberGenerator &randomNumberGenerator, size_t &maxElement) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
sample(hops::RandomNumberGenerator &randomNumberGenerator, size_t &maxElement) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
sample(const MatrixType &x, hops::RandomNumberGenerator &randomNumberGenerator) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
sample(hops::RandomNumberGenerator &randomNumberGenerator) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
setKernelSigma(double m_sigma) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
updateObservations(const MatrixType &x, const VectorType &y, const VectorType &error, bool isUnique=false) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |
updateObservations(const MatrixType &x, const VectorType &y) | hops::GaussianProcess< MatrixType, VectorType, Kernel > | inline |