hops
Public Member Functions | List of all members
hops::MultivariateGaussian Class Reference

#include <MultivariateGaussian.hpp>

Inheritance diagram for hops::MultivariateGaussian:
Inheritance graph
Collaboration diagram for hops::MultivariateGaussian:
Collaboration graph

Public Member Functions

 MultivariateGaussian (VectorType mean, MatrixType covariance)
 
MatrixType::Scalar computeNegativeLogLikelihood (const VectorType &x) const override
 Evaluates the negative log likelihood for input x. More...
 
std::optional< VectorTypecomputeLogLikelihoodGradient (const VectorType &x) const override
 
std::optional< MatrixTypecomputeExpectedFisherInformation (const VectorType &) const override
 
const VectorTypegetMean () const
 
const MatrixTypegetCovariance () const
 
- Public Member Functions inherited from hops::Model
virtual ~Model ()=default
 
virtual std::optional< std::vector< std::string > > getParameterNames () const
 

Constructor & Destructor Documentation

◆ MultivariateGaussian()

hops::MultivariateGaussian::MultivariateGaussian ( VectorType  mean,
MatrixType  covariance 
)

Member Function Documentation

◆ computeExpectedFisherInformation()

std::optional< MatrixType > hops::MultivariateGaussian::computeExpectedFisherInformation ( const VectorType ) const
overridevirtual

Reimplemented from hops::Model.

◆ computeLogLikelihoodGradient()

std::optional< VectorType > hops::MultivariateGaussian::computeLogLikelihoodGradient ( const VectorType x) const
overridevirtual

Reimplemented from hops::Model.

◆ computeNegativeLogLikelihood()

MatrixType::Scalar hops::MultivariateGaussian::computeNegativeLogLikelihood ( const VectorType x) const
overridevirtual

Evaluates the negative log likelihood for input x.

Parameters
x
Returns

Implements hops::Model.

◆ getCovariance()

const MatrixType & hops::MultivariateGaussian::getCovariance ( ) const

◆ getMean()

const VectorType & hops::MultivariateGaussian::getMean ( ) const

The documentation for this class was generated from the following file: