{ "cells": [ { "cell_type": "markdown", "metadata": { "tags": [] }, "source": [ "# Visualizing samples from parallel tempering" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [ "num_chains = 8\n", "\n", "samples = []\n", "\n", "for c in range(num_chains):\n", " samples.append(pd.read_csv('test_data/samples_' + str(c) + '.csv'))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjQ0lEQVR4nO3de5RU5bnn8e8j1wgoBvCSbtqGhKhEMwYaMROXwZNgkOXSGJ0I6qgRphPHZOk456yYlVlJ9MxEczuJEz0nYRzC0azAOcdzSY9BDVFZThwVSNAESRCCRBoRBOUut/aZP6q62N12de3q2teq32etWuza+62qh13VT7317He/29wdERHJv+PSDkBERKKhhC4iUieU0EVE6oQSuohInVBCFxGpE4PTeuGxY8d6a2trWi8vIpJLv/nNb3a4+7i+tqWW0FtbW1m1alVaLy8ikktm9udy21RyERGpE0roIiJ1QgldRKROpFZDF4nCkSNH6Ozs5ODBg2mH0q/hw4fT3NzMkCFD0g5F6pgSuuRaZ2cno0aNorW1FTNLO5w+uTs7d+6ks7OTCRMmpB2O1DGVXCTXDh48yJgxYzKbzAHMjDFjxmT+V4TknxK65F6Wk3m3PMQo+aeELiJSJ1RDl7ry/MadkT7f9IljQrV77LHHuPXWW+nq6mL+/PnccccdkcYhEoYSukiNurq6uOWWW1i2bBnNzc1MmzaNyy67jMmTJ6cdmqQg2KkI2yGIihK6SI1WrFjBBz7wASZOnAjAnDlz+PnPf66E3kCi/mU4UKqhi9Roy5YtjB8/vnS/ubmZLVu2pBiRNCr10EVEBiArvfIg9dBFatTU1MTmzZtL9zs7O2lqakoxImlU6qGL1GjatGmsX7+eV155haamJpYsWcLPfvaztMOSDEj6AKkSutSVpEcVAAwePJj77ruPT33qU3R1dXHTTTfxoQ99KPE4JNuSSO5K6CIRmD17NrNnz047DGlwFRO6mS0ELgW2u/vZZdrMAH4ADAF2uPvHowtRRCQbsnggNChMD30RcB/wYF8bzWw08LfALHd/1cxOjiy6GqU5wF9EJGkVR7m4+9PAm/00uQb4F3d/tdh+e0SxiYhIFaIYtvhB4CQzW25mvzGz6yN4ThERqVIUB0UHA1OBTwDvAZ41s+fc/eXeDc2sHWgHaGlpieClRUSkWxQ99E7gcXff7+47gKeBf9dXQ3df4O5t7t42bty4CF5aRES6RdFD/zlwn5kNBoYC04HvR/C8ZfV3pFkHPxvcpmeifb7Wj4VqdtNNN/HII49w8skns2bNmmhjEAmpYg/dzBYDzwJnmFmnmc0zsy+Y2RcA3P0PwGPA74AVwAPurk+0NJQbb7yRxx57LO0wpMFV7KG7+9wQbb4DfCeSiERy6MILL2TTpk1phyENLvdnio7atqLniomX9NlOY9JFpN7lPqH3FkzcwWS/95Tz0ghHRBpMmnmn7hJ6KMEDZyEPeomIZF0uE/q7yiwiIjGode6WpHvruUzoImWl9Itr7ty5LF++nB07dtDc3Mydd97JvHnzUolFGlfdJfRyvfce6087IaFopFEsXrw47RAkRVmpGtRdQhcRSUJWkniQErqISAJ6fAGUGV5dq4ZM6Gu37iktT25NLw4RkSjVXUJfe2BjaXny8RNTjERE6k0WyyxBdZfQq6UzSEUkSml2Khs+oSdR1xKR/Mj6dUP70/AJXerLqtdXRfp8bae2VWyzefNmrr/+erZt24aZ0d7ezq233hppHJKOrJdYest9Qg/+vBFJw+DBg/ne977HlClT2Lt3L1OnTmXmzJlMnjw57dAkIVnJQ1FcsUikoZ122mlMmTIFgFGjRnHWWWexZcuWlKOSRpT7Hnp/yh2c0EgYicumTZtYvXo106dPTzsUqULYunm1uSPpXBPmikULzWy7mfV7FSIzm2ZmR83squjCE8mPffv2ceWVV/KDH/yAE07Q9BKSvDA99EXAfcCD5RqY2SDgW8AvowkrelmpcUl9OnLkCFdeeSXXXnstn/nMZ9IORxJQbU7p0VuPOpiiMJege9rMWis0+xLwz8C0KIKqRMlZssTdmTdvHmeddRa333572uFIA6u5hm5mTcAVwEVUSOhm1g60A7S0tNT60pHTSUb5F2aYYdSeeeYZHnroIc455xzOPfdcAL75zW8ye/bsxGORxhbFQdEfAF9293fMrN+G7r4AWADQ1tbmEby2SOouuOAC3PVxrhd5G3seFEVCbwOWFJP5WGC2mR1193+L4LlFRCSkmhO6u0/oXjazRcAjSuYiUg96H687fv2x8wsOTGpKOpyKKiZ0M1sMzADGmlkn8HVgCIC7/yjW6BLQ48jztsAGzesiIjkTZpTL3LBP5u431hSNiIgMWF2fKVrLzyONeBGRvKm7hB5M4iIiYQxkZEu5XJNmbT33CT2uBK550vPpwMqVkT7f8dMqnyt38OBBLrzwQg4dOsTRo0e56qqruPPOOyONQ5KT5xMXc5/QRdI2bNgwnnzySUaOHMmRI0e44IILuOSSSzj//PPTDk36ESyrjkoxjihp+lyRGpkZI0eOBApzuhw5coRKJ9mJxEE9dJEIdHV1MXXqVDZs2MAtt9yi6XPrRN6OyamHHrD2wMbSTaQagwYN4oUXXqCzs5MVK1awZk2/s01LAzp+/ZbSLS4N00MvN4Qx62d+Sb6MHj2aiy66iMcee4yzzz477XCkwaiHLlKjN954g127dgHw9ttvs2zZMs4888x0g5KG1DA99GolMRm9RC/MMMOobd26lRtuuIGuri7eeecdPvvZz3LppZcmHocM3KYX/++xOzn+pa6EHqDyiwzEhz/8YVavXp12GBKRWmvcaeaRhkzoYd6wHm0+EWMwIpKK4MmD4S4RnX0NmdCrtumZY8utH0svDhGRfiihi4jEJOlx7LlM6Hkb7C8ijePtfaNLy+8ZuSvR1w5zgYuFwKXAdnd/18BaM7sW+DJgwF7gZnd/MepA07R2657S8uTW9OIQkegER7IdH/Ix5ZJ1cH2awoxDXwTM6mf7K8DH3f0c4K8pXgRaRESSFeaKRU+bWWs/2/9f4O5zQHMEcWWKxqTnx2vr34r0+d436aTQbbu6umhra6OpqYlHHnkk0jgkn5Iuv0RdQ58HPFpuo5m1A+0ALS0tEb90QZr1K2ls9957L2eddRZ79uyp3FhS8dDqJ0vL70kxjrhEduq/mV1EIaF/uVwbd1/g7m3u3jZu3LioXrpqb+8bXbqJRKGzs5Nf/OIXzJ8/P+1QpB/vefMPpVs9iqSHbmYfBh4ALnH3ehmjLxLabbfdxre//W327t2bdigSobx1+mpO6GbWAvwL8B/d/eXaQ6pO2B2etzdG8uORRx7h5JNPZurUqSxfvjztcKRGec4pYYYtLgZmAGPNrBP4OjAEwN1/BHwNGAP8bfEqLUfdvS2ugKsRyw7XWaPSyzPPPENHRwdLly7l4MGD7Nmzh+uuu46f/vSnaYcmGZLEF0CYUS5zK2yfD+S2cBjmIGqPE5nef26s8Uj+3H333dx9990ALF++nO9+97tK5jmTxd72QOTyTFGRcqoZZiiNLdhRe5vR6QUSISX0gDC9dZ01Kv2ZMWMGM2bMSDsMaVC5TOhJ/zyql59jIlLfcpnQRUQGotaJ/Q7u3VVaHj5qdG3BxEAJvUqaBkAkX57f2Dinxiihl6Eyi4jkTUMm9Fp+NunSdCIC2Sy/RDaXi4iIpCv3PfTgt2R/svINKvHqXLsm0udrnvyua7r0qbW1lVGjRjFo0CAGDx7MqlWrIo1DohdXWTXNnnvuE3qtqt35wQ/BgZUrS8vHT5sWYVSSR0899RRjx45NOwzJkKSTe8Mn9KCqd/7rwd6gErpI1lXbKw9bAQjbLm5K6DXYtHN/aVlDGBubmXHxxRdjZnz+85+nvb097ZCkaNDvX0g7hMTkMqEP5NswK9+gUp9+/etf09TUxPbt25k5cyZnnnkmF154YdphNazg2PNRb/V9MYukyyFJ5CCNchGJQFNTEwAnn3wyV1xxBStWrEg5IqnGwb27+rzljRJ6DXbtOb50k8a1f//+0pWK9u/fzy9/+UvOPjvc6BiJ36aDr5Vu9S6XJZes2Hp4R9ohSC9hhxlGadu2bVxxxRUAHD16lGuuuYZZs2YlHoccs3fzvrRDSEWYKxYtBC4Ftrv7u/5arHCZonuB2cAB4EZ3/23UgaYpi2eESXZMnDiRF198Me0wJOC4jRvSDiEVYXroi4D7gAfLbL8EmFS8TQf+rvhvQ9GYdJHs2P52Z2l5yIHRpeU81sWrEeYSdE+bWWs/TS4HHnR3B54zs9Fmdpq7b40qyDTU+xsvIvUnihp6E7A5cL+zuO5dCd3M2oF2gJaWlgheOlonvnPs8mW7j3urugfrJCMRSVmio1zcfYG7t7l727hx45J8aRGRuhdFD30LMD5wv7m4rqH8cd+xmt2UFOMQkcYVRQ+9A7jeCs4Hdue9fi4ikkdhhi0uBmYAY82sE/g6MATA3X8ELKUwZHEDhWGLn4sr2FrUVB8P4fXdb0f+nFK9Qxt3R/p8wyaeGKrdrl27mD9/PmvWrMHMWLhwIR/96EcjjUWkkjCjXOZW2O7ALZFFFKFgEq+lTVD50S+jq3oeqS+33nors2bN4uGHH+bw4cMcOHAg7ZAa2pAD2yJ5nv7yQxwdw1rpTFGRGu3evZunn36aRYsWATB06FCGDh2ablASu3LJPs1E35AJvdpeuUh/XnnlFcaNG8fnPvc5XnzxRaZOncq9997LiBEj0g6toax6ve+rRFV7Tkme80PdTc514jsnlW5pPc+Tzz1Xukn9O3r0KL/97W+5+eabWb16NSNGjOCee+5JO6yG8/vf7Cnd0hRVDhqIhuyhx+24P7167M7556cXiCSiubmZ5uZmpk8vzHhx1VVXKaGnYNjeTaXlML3yPPfEy8l9Qk/iTYl7hIzk26mnnsr48eNZt24dZ5xxBk888QSTJ+saVkkb1nls9tODKcaRptwn9Kzo0SMYoWH4aQk7zDBqP/zhD7n22ms5fPgwEydO5Cc/+UkqcUi2JN0ZzGVCr8efSpJv5557LqtW9X1QTiQpuUzoaVL5RSQ7Xlt/7G+wUevmQUroNSiX3HfuP5RGOCLS4JTQY6C51EWS8ced69IOIVOU0EUkt3oMES4jK2WWJOJQQo+ZLk0nIklRQo/Z6y+tLy1PVEIXqVnwQOjenX1PwpWVXnnSlNAjUu4A6Y43t5eWJyYaUWPatGlTpM/X2tpasc26deu4+uqrS/c3btzIXXfdxW233RZpLCKVKKGL1OiMM87ghRdeAKCrq4umpiauuOKKdIOShhQqoZvZLOBeYBDwgLvf02t7C/D3FCYFHwTc4e5Low01Pxr1557AE088wfvf/35OP/30tEOpW9tf+WNpec9OnZUdFOaKRYOA+4GZQCew0sw63H1toNl/A/7R3f/OzCZTuIpRawzximTakiVLmDu332vCSEzUkQrXQz8P2ODuGwHMbAlwORBM6A6cUFw+EXgtyiDjtJeu0vIoBkX+/NsO7Sotb+x4trQ88TJdnqzeHD58mI6ODu6+++60Q5EGFSahNwGbA/c7gem92nwD+KWZfQkYAXyyrycys3agHaClpaXaWHNpxNHRpeUd246NmZ2IEnq9efTRR5kyZQqnnHJK2qE0jKR75XF3AGsV1UHRucAid/+emX0UeMjMznb3d4KN3H0BsACgra3NI3rtqgXflHLrg29WVG/itre3V24kubV48WKVW3KqXE7ImzAJfQswPnC/ubguaB4wC8DdnzWz4cBYILcZLI43eMQhXZIsbmGGGcZh//79LFu2jB//+MepvH5D+ePrA35olH/XWeyth0noK4FJZjaBQiKfA1zTq82rwCeARWZ2FjAceCPKQPPqwOEjpeXjh6cYiMRqxIgR7Ny5M+0w6lbwZCIpr2JCd/ejZvZF4HEKQxIXuvtLZnYXsMrdO4D/CvwvM/svFA6Q3ujuqZVURKSxJd17zkpvPVQNvTimfGmvdV8LLK8FPhZtaNGKo4RSy5vYuXZNabl58tmRxSRSj3qMPX9z4CWXepfLM0XT/Dasl4Mn9cTdMbO0w+iXfrBGZ0/XvqraN9LfbC4TelDvN6vc6JSs2fX7PaXlZl1PeMCGDx/Ozp07GTNmTGaTuruzc+dOhg/XQZRq9Kib13AgNGlpdjhzn9B7SyuJhxnyePzBPUi0mpub6ezs5I03sn0Mfvjw4TQ3N6cdRm69eUgHRcOou4SeBdV+qRzauLu0nNZV6/NqyJAhTJgwIe0wJAbBunkYWfxFnnRvXQk9JUe3Bedx/lBqcYhIMpL4wlFCz4AdnXtLy03qoYvIACmhp+WATkIR6c/gtyqPDMpimSVNSugp2Xh4V2l58NZjk3Y1oQNn0rg6n1pdsY2SeHlK6AnadvhgaXnYEO16kbB2dR2s3EiU0LOg5wFSEZGBUULPGA1hlEa2a/vbpWV1dKqnhJ4xv3txRWl52sSZKUYikq4dR6o7xV+U0DNNvXURqYYSekoOHTlaWg72RE5kZBrhiKQmOPNoOYf2a9qMMJTQM2DPkWMnFp3IqSlGIpKCbccuAvPGgTdLy8G/CwnnuDCNzGyWma0zsw1mdkeZNp81s7Vm9pKZ/SzaMBvHvl2HSjcRkWpU7KGb2SDgfmAm0AmsNLOO4kUtuttMAr4CfMzd3zKzk+MKuJG88eeNpeXmiR9JMRIRyYMwJZfzgA3uvhHAzJYAlwNrA23+E3C/u78F4O65vTh0Kg4fKC12vRmYJrS1qbSoA6RSr7bu2lFa7vH5D/xdSDhhEnoTsDlwvxOY3qvNBwHM7BkK1x39hrs/FkmEAsCr2zpLy5OU0KWOqLwYnagOig4GJgEzgGbgaTM7x913BRuZWTvQDtDS0hLRS9evYM9l9KnvKy1v2rSptNza2ppgRCKSZWES+hZgfOB+c3FdUCfwvLsfAV4xs5cpJPiVwUbuvgBYANDW1qaLLFZh1+uvlZbHnTYpxUhEarf+2ZfSDqEuhUnoK4FJZjaBQiKfA1zTq82/AXOBn5jZWAolmI1ITYI/RUeOHpZiJCLRCnZQgjRUsTYVE7q7HzWzLwKPU6iPL3T3l8zsLmCVu3cUt11sZmuBLuCv3F0Tfg9A8AN9Eif12ebI1v3H7rTGHJBIRIIH9kO1D5x8J+GEqqG7+1Jgaa91XwssO3B78SYJUj1d8iJ4YF/ioTNFRSQ2wQ5HULCc2GOootRECV1EYhMsD5arm/egsec1UULPsGDPZV+gnj46MN2L6uki0k0JvY6oni7S2JTQMyB4NH8YgZ+cQ0YN+Dl71y6V4CUp5ermEj8l9BwK1iKDZ5CKZEGPMqAkSgldRGIT5kCoTiaKjhJ6DvWczCjQW+dYb33IaSN6PEb1dYlatZ8pDVWMnxJ6hoU5a1QkSeXq41HVzXV2aG2U0HMi2KMZ9N7akrt66xK1qsebSyyU0DOmx4iXoQN/nt4HpnqXYESSUG6uc9XN46GE3iCCCV7JXTJFZ4dGRgldRAZEwxOzRwk9yw5Hc5JRf8odzFJtXaoRpm6ukS3xU0LPoR5/GIGJXXTCkcRBZ37mhxK6iChp14njwjQys1lmts7MNpjZHf20u9LM3MzaogtRoDAqoPsWtG/XodItrCNb95du5WzatKl0E4nToSNHSzepTcUeupkNAu4HZlK4GPRKM+tw97W92o0CbgWejyNQqU7vmqZKMCL1L0zJ5Txgg7tvBDCzJcDlwNpe7f4a+BbwV5FGKKnTiUhSjWp+LUq0wiT0JmBz4H4nMD3YwMymAOPd/RdmVjahm1k70A7Q0tJSfbSNrMyIl3IHSMPS+PTGNZByWmRnhGrseSxqPihqZscBfwPcWKmtuy8AFgC0tbV5ra8tPQV7RiNHD+uxTSNgZKA03jw/wiT0LcD4wP3m4rpuo4CzgeVmBnAq0GFml7n7qqgCbUQ9pgEYcuytCh4YPSGm8ekiUQj+ggx+bnUANB5hEvpKYJKZTaCQyOcA13RvdPfdwNju+2a2HPhLJfP6pHq6SHZVTOjuftTMvgg8DgwCFrr7S2Z2F7DK3TviDlKSoXp6/QtbN6+2zKIDodkQqobu7kuBpb3Wfa1M2xm1hyW16v0HFqypq54ucdIp/unRmaJ5lMAcLyJ90ciWbFNCz7keB0jfPLa+1otghKF6enZF+d7UksQ173mylNBzotyIl6zQrI3ZFaZurqGJ9SF7mUESVa6ergOkUokOhGaPEnqD6O+ko0qU3KUSHQjNBiX0OtX7DyyJmnpfVGcXSY4Set5pxIsM0EDq5mHKLOUOhOrs0PgpodeRsFMClCu/hBmfXkv5Rb31aJTbj1HOXV/T8ERJjRJ6gwiWYNIqvwQpuVenXLKuNoknPppFY88TpYQuIv3SaJb8UEKvJwnX0zX6pbGVm0lR0qOEnkNJnGRUroaq2npyoqqJhymzqGZeH5TQRSQ2GtmSLCX0nAtzEQwoP+qllhOO4qApBLKhXN1cJxBlmxK6RC6O2rrKMtVRmaUxhUroZjYLuJfCBS4ecPd7em2/HZgPHAXeAG5y9z9HHKtEpNwQxqz11svJa3KPcpx4lh3avyftEBpWxYRuZoOA+4GZQCew0sw63H1toNlqoM3dD5jZzcC3gavjCFgGptrrkOYluUt1BtIrV5klP8L00M8DNrj7RgAzWwJcDpQSurs/FWj/HHBdlEHKAPQ+oWPo8ZG/RNxnllYrrz33qCR90pCGKmZPmITeBGwO3O8EpvfTfh7waF8bzKwdaAdoaWkJGaJkSdbqrtWWMXq3ryXxJ3EKfiVR1cprPnlIZ4RmQqQHRc3sOqAN+Hhf2919AbAAoK2tzaN8bRnY+PQkpwRIq7cetl2YpFzuC6De6uMqs+RTmL/6LcD4wP3m4roezOyTwFeBj7u7zhXOsGrr6Y0iTFKup8Q9kF65yizZFiahrwQmmdkECol8DnBNsIGZfQT4MTDL3bdHHqXULviTuEw9PWsTeMkxmbxEnMosmVMxobv7UTP7IvA4hWGLC939JTO7C1jl7h3Ad4CRwD+ZGcCr7n5ZjHFLBb3P0Iv7OqRhDpAGlUtQmhMmXnFNtKUzQrMh1F+5uy8FlvZa97XA8icjjksSUq78Euyt76Pv3nq54YzVJneJRrn9HiaJq2ZeH3SmqEiOlRvBEuVoJNXN80MJvRGVqafrYGn6kqyVD6hXrrp5pimhS6aotp4NYXrlqptnjxJ6g0hiDvVKVFvvWyZHsEguKaHLgJU72FbuwtO1qLerI+U1iatXnm1K6A2oR2+d6Menxz2xV70l92rFcSp/vyUW1c1zQwld+hRmOGMtJx81Yvmlll55VL90BnIgVL3y/FBCl2NCnE1arSSn4W30nnukVxlSrzyXlNCloiz31sv1epNI7uVeI6r6eNyzJGp8ef1RQm9wZUe/xNBbDyOOUkytyT1Mgk4yideibBJXj7wuKKFLSbla6bChx5Zr6a2HGRUTt/4Sbxy97DgkcSq/6ub5pIQulVXZW89CKWYgkkzi1fbEYymtBN5XJfD6oIQu1QkkgXKXAo6jzp5XtXwpVZvENcGWKKFLYsol9zAjYart0WZxKGSSQw/VK29MSuhSUdnaOn0fSAv23Kud5CuqOnu55Nlfoq+2N11Lgo6qDh5qpIoOeDYMJXSJVbmEc8KblR8b5uBqrQdUk5h+tltUF5eoZbiheuX1LVRCN7NZwL0Urlj0gLvf02v7MOBBYCqwE7ja3TdFG6pkTZhRMT2Uqb+X68WHuchGteIeFthbWj1xJe7GVDGhm9kg4H5gJtAJrDSzDndfG2g2D3jL3T9gZnOAbwFXxxGwZN+h/X0fLi03zn1PmZLACSNOKS2Xq7/v3vh6n+vDCvbw47g8W7m4g+vLDQXtkcRDlE2UxCVMD/08YIO7bwQwsyXA5UAwoV8OfKO4/DBwn5mZu3uEsUrOVZtw9uzf1udjhwXWnzD4PaXlrkAZJ+zFOnaHKP2UdSjwxTXshGOvHYivxzDPbZUT9B71sqUGYRJ6E7A5cL8TmF6uTfGi0ruBMcCOYCMzawfai3f3mdm6gQQNjO393BmR1bggu7EpruoorupkMq5r/vtXaonr9HIbEj0o6u4LgAW1Po+ZrXL3tghCilRW44Lsxqa4qqO4qtNocR0Xos0WYHzgfnNxXZ9tzGwwcCKFg6MiIpKQMAl9JTDJzCaY2VBgDtDRq00HcENx+SrgSdXPRUSSVbHkUqyJfxF4nMKwxYXu/pKZ3QWscvcO4H8DD5nZBuBNCkk/TjWXbWKS1bggu7Epruooruo0VFymjrSISH0IU3IREZEcUEIXEakTmU3oZvYfzOwlM3vHzMoO7zGzWWa2zsw2mNkdgfUTzOz54vp/KB7QjSKu95rZMjNbX/z3XacnmtlFZvZC4HbQzD5d3LbIzF4JbDs3qbiK7boCr90RWJ/m/jrXzJ4tvt+/M7OrA9si3V/lPi+B7cOK//8Nxf3RGtj2leL6dWb2qVriGEBct5vZ2uL+ecLMTg9s6/M9TSiuG83sjcDrzw9su6H4vq83sxt6PzbmuL4fiOllM9sV2Bbn/lpoZtvNbE2Z7WZm/7MY9+/MbEpgW+37y90zeQPOAs4AlgNtZdoMAv4ETASGAi8Ck4vb/hGYU1z+EXBzRHF9G7ijuHwH8K0K7d9L4UDx8cX7i4CrYthfoeIC9pVZn9r+Aj4ITCouvw/YCoyOen/193kJtPnPwI+Ky3OAfyguTy62HwZMKD7PoATjuijwGbq5O67+3tOE4roRuK+Px74X2Fj896Ti8klJxdWr/ZcoDOaIdX8Vn/tCYAqwpsz22cCjgAHnA89Hub8y20N39z+4e6UzSUvTErj7YWAJcLmZGfAXFKYhAPh74NMRhXZ58fnCPu9VwKPuHvccptXGVZL2/nL3l919fXH5NWA7MC6i1w/q8/PST7wPA58o7p/LgSXufsjdXwE2FJ8vkbjc/anAZ+g5CueDxC3M/irnU8Ayd3/T3d8ClgGzUoprLrA4otful7s/TaEDV87lwINe8Bww2sxOI6L9ldmEHlJf0xI0UZh2YJe7H+21PgqnuPvW4vLrwCn9NabQy+v9YfofxZ9b37fCTJVJxjXczFaZ2XPdZSAytL/M7DwKva4/BVZHtb/KfV76bFPcH93TWIR5bJxxBc2j0Mvr1td7mmRcVxbfn4fNrPskxEzsr2JpagLwZGB1XPsrjHKxR7K/Up0P3cx+BZzax6avuvvPk46nW39xBe+4u5tZ2XGfxW/ecyiM4e/2FQqJbSiFsahfBu5KMK7T3X2LmU0EnjSz31NIWgMW8f56CLjB3d8prh7w/qpHZnYd0AZ8PLD6Xe+pu/+p72eI3P8BFrv7ITP7PIVfN3+R0GuHMQd42N27AuvS3F+xSjWhu/sna3yKctMS7KTwU2ZwsZfV13QFA4rLzLaZ2WnuvrWYgLb381SfBf7V3Y8Enru7t3rIzH4C/GWScbn7luK/G81sOfAR4J9JeX+Z2QnALyh8mT8XeO4B768+VDONRaf1nMYizGPjjAsz+ySFL8mPu3tprt8y72kUCapiXO4enOLjAQrHTLofO6PXY5dHEFOouALmALcEV8S4v8IoF3sk+yvvJZc+pyXwwlGGpyjUr6EwLUFUPf7gNAeVnvddtbtiUuuuW38a6PNoeBxxmdlJ3SULMxsLfAxYm/b+Kr53/0qhtvhwr21R7q9aprHoAOZYYRTMBGASsKKGWKqKy8w+AvwYuMzdtwfW9/meJhjXaYG7lwF/KC4/DlxcjO8k4GJ6/lKNNa5ibGdSOMD4bGBdnPsrjA7g+uJol/OB3cVOSzT7K66jvbXegCso1JEOAduAx4vr3wcsDbSbDbxM4Rv2q4H1Eyn8wW0A/gkYFlFcY4AngPXAr4D3Fte3UbiaU3e7Vgrfusf1evyTwO8pJKafAiOTigv498XXfrH477ws7C/gOuAI8ELgdm4c+6uvzwuFEs5lxeXhxf//huL+mBh47FeLj1sHXBLx571SXL8q/h1075+OSu9pQnHdDbxUfP2ngDMDj72puB83AJ9LMq7i/W8A9/R6XNz7azGFUVpHKOSvecAXgC8UtxuFCwb9qfj6bYHH1ry/dOq/iEidyHvJRUREipTQRUTqhBK6iEidUEIXEakTSugiInVCCV1EpE4ooYuI1In/D7xfNVBOrz2JAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure()\n", "for i in range(num_chains):\n", " plt.hist(samples[i]['x0'], density=True, alpha=0.245, label=str(i), bins=100)\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 4 }